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Inside NVIDIA’s First GPU-CPU Superchip 

 

The NVIDIA® GH200 Grace Hopper architecture brings together the groundbreaking 
performance of the NVIDIA Hopper GPU with the versatility of the NVIDIA Grace™ CPU, 
connected with a high bandwidth and memory coherent NVIDIA NVLink Chip-2-Chip 
(C2C)® interconnect in a single Superchip, and support for the new NVIDIA NVLink 
Switch System. 

NVIDIA NVLink-C2C is NVIDIA’s memory coherent, high-bandwidth, and low-latency 
interconnect for superchips. It is the heart of the Grace Hopper Superchip and delivers 
up to 900GB/s total bandwidth. This is 7x higher bandwidth than x16 PCIe Gen5 lanes 
commonly used in accelerated systems. 

NVLink-C2C memory coherency increases developer productivity, performance, and the 
amount of GPU-accessible memory. CPU and GPU threads can now concurrently and 
transparently access both CPU and GPU resident memory, allowing developers to focus 
on algorithms instead of explicit memory management. Memory coherency allows 
developers to only transfer the data they need, and not migrate entire pages to and 
from the GPU. It also enables lightweight synchronization primitives across GPU and 
CPU threads by enabling native atomics from both the CPU and GPU. NVLink-C2C with 
Address Translation Services (ATS) leverages NVIDIA Hopper DMA engines for 
accelerating bulk transfers of pageable memory across host and device. 

NVLink-C2C enables applications to oversubscribe the GPU’s memory and directly utilize 
NVIDIA Grace CPU’s memory at high bandwidth. With up to 480GB of LPDDR5X CPU 
memory per Grace Hopper Superchip, the GPU has direct high-bandwidth access to 6x 
more memory than available with PCIe. Combined with NVIDIA NVLink Switch System, all 
GPU threads running on up to 256 NVLink-connected GPUs on DGX GH200 can now 
access up to 144TB of memory at high bandwidth. Fourth generation NVLink allows 

https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/nvlink-c2c/
https://www.nvidia.com/en-us/data-center/nvlink-c2c/


Inside NVIDIA’s First GPU-CPU Superchip 

6 

NVIDIA Grace Hopper Superchip Architecture 

accessing peer memory using direct loads, stores, and atomic operations, enabling 
accelerated applications to solve larger problems more easily than ever.  

NVIDIA GH200 Grace Hopper Superchip with HBM3 uses 96GB of HBM3 memory, 
delivering 4TB/s of memory bandwidth. The next generation NVIDIA GH200 Grace 
Hopper Superchip with HBM3e is the world’s first processor to utilize HBM3e memory 
technology and has 144GB of HBM3e delivering over 4.9TB/s, 1.5X more bandwidth than 
an H100 80GB SXM. The HBM in NVIDIA Grace Hopper is combined with the CPU 
memory over NVLink-C2C to provide up to 624GB of fast-access memory to the GPU to 
deliver the memory capacity and bandwidth required to handle the world’s most 
complex accelerated computing and generative AI workloads.  

The NVIDIA GH200 Grace Hopper Superchip is the first true heterogeneous accelerated 
platform for high-performance computing (HPC) and AI workloads. It accelerates 
applications with the strengths of both GPUs and CPUs while providing the simplest and 
most productive heterogeneous programming model to date, enabling scientists and 
engineers to focus on solving the world’s most important problems. Together with 
NVIDIA networking technologies, NVIDIA GH200 provides the recipe for the next 
generation of HPC supercomputers and AI factories, enabling customers to take on 
larger datasets, more complex models, and new workloads, solving them more quickly 
than before. 

This whitepaper highlights NVIDIA Grace Hopper’s key features, its programming model, 
and the performance improvements they deliver to the most demanding HPC and AI 
applications. 

NVIDIA GH200 Grace Hopper Overview 
NVIDIA Grace CPU is the first NVIDIA data center CPU, and it is built from the ground up 
to create HPC and AI superchips. The NVIDIA Grace CPU uses 72 Arm Neoverse V2 CPU 
cores to deliver leading per-thread performance, while providing higher energy efficiency 
than traditional CPUs. Up to 480GB of LPDDR5X memory provides the optimal balance 
between memory capacity, energy efficiency, and performance with up to 500GB/s of 
memory bandwidth per CPU. Its Scalable Coherency Fabric provides up to 3.2TB/s of 
total bisection bandwidth to realize the full performance of CPU cores, memory, system 
IOs, and NVLink-C2C.  

NVIDIA Hopper is the ninth-generation NVIDIA data center GPU and is designed to 
deliver order-of-magnitude improvements for large-scale AI and HPC applications 
compared to previous NVIDIA Ampere GPU generations. Thread Block Clusters and 
Thread Block Reconfiguration improve spatial and temporal data locality, and together 
with new Asynchronous Execution engines, enable applications to always keep all units 
busy.  

NVIDIA GH200 fuses an NVIDIA Grace CPU and an NVIDIA Hopper GPU into a single 
superchip via NVIDIA NVLink-C2C, a 900GB/s total bandwidth chip-to-chip interconnect. 
NVLink-C2C memory coherency enables programming of both the Grace CPU Superchip 
and the Grace Hopper Superchip with a unified programming model.  

https://www.nvidia.com/en-us/high-performance-computing/
https://www.nvidia.com/en-us/deep-learning-ai/products/solutions/
https://developer.nvidia.com/blog/inside-nvidia-grace-cpu-nvidia-amps-up-superchip-engineering-for-hpc-and-ai/
https://www.nvidia.com/en-us/data-center/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper


Inside NVIDIA’s First GPU-CPU Superchip 

7 

NVIDIA Grace Hopper Superchip Architecture 

Figure 1 shows the logical overview of the NVIDIA GH200 Grace Hopper Superchip and 
Table 1 lists its key features. 

 

 
 
 

Figure 1. NVIDIA GH200 Grace Hopper Superchip Logical Overview 

 

Table 1. NVIDIA GH200 Grace Hopper Superchip Key Features 

Feature Description 

Grace CPU cores (number) Up to 72 cores 

CPU LPDDR5X bandwidth (GB/s) Up to 500GB/s 

GPU HBM bandwidth (GB/s) 4TB/s HBM3 

4.9TB/s HBM3e 

NVLink-C2C bandwidth (GB/s) 900GB/s total, 450GB/s per direction 

CPU LPDDR5X capacity (GB) Up to 480GB 

GPU HBM capacity (GB) 96GB HBM3 

144GB HBM3e 

PCIe Gen 5 Lanes  64x 
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NVIDIA GH200 Platforms 
Heterogeneous GPU-CPU Platforms for AI, Data Analytics, and HPC 
The GH200 Grace Hopper Superchip forms the basis for many different server designs 
that serve diverse needs in Machine Learning and HPC. NVIDIA has developed two 
platforms that address diverse customer needs. 

• NVIDIA MGX with GH200 is ideal for scale-out of accelerated solutions including 
but not limited to traditional machine learning (ML), AI, data analytics, accelerated 
databases, and HPC workloads. With up to 624GB of fast memory, a single node 
can run a variety of workloads and when combined with NVIDIA Networking 
solutions (Connect-X7, Spectrum-X, and BlueField-3 DPUs), this platform is easy to 
manage and deploy, and uses a traditional HPC/AI cluster networking architecture. 

• NVIDIA DGX GH200 enables all GPU threads in the NVLink-connected domain to 
address up to 144TB of memory at up to 900GB/s total bandwidth per superchip, 
up to 450GB/s all-reduce bandwidth, and up to 115.2TB/s bisection bandwidth, in 
a 256 GPU NVLink connected system making this platform ideal for strong scaling 
the world’s largest and most challenging AI training and HPC workloads.  

NVIDIA MGX with GH200 and InfiniBand or Ethernet 

Ideal for Scale-out Machine Learning and HPC Workloads 

 

Figure 2. NVIDIA MGX Platform 
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NVIDIA MGX is a modular reference architecture for accelerated computing. With it, 
ODMs and OEMs can use a building block approach to design multiple systems, saving 
development cost and time-to-market. NVIDIA MGX supports hundreds of GPU, DPU, CPU, 
storage, and networking combinations for AI, high-performance computing (HPC), and 
NVIDIA Omniverse™ workloads. 

NVLink-connected domains are networked with NVIDIA InfiniBand (IB) or Ethernet 
networking, e.g., NVIDIA ConnectX-7 NICs paired with NVIDIA Quantum 2 NDR or NVIDIA 
Spectrum-4 switches, and/or OEM-defined I/O solutions. 

Enhance MGX with GH200 and NVIDIA BlueField-3 DPUs 
Traditional supercomputing offers bare-metal performance without any isolation or 
secure infrastructure. The NVIDIA BlueField-3 Data Processing Unit (DPU) is a powerful 
“computer-in-front-of-a-computer" that is isolated and abstracted from the host system 
and therefore forms part of the trusted data center infrastructure. Bluefield DPUs 
deliver high-speed networking connectivity (using EDR, HDR, NDR InfiniBand, or 
100/200/400G Ethernet) to connect nodes, in-network computing offloads for HPC, as 
well as infrastructure offload and acceleration. Together with the NVIDIA DOCA (Data 
center-on-a-Chip) framework, BlueField DPUs enable software-defined, hardware 
accelerated infrastructure and data center services for security (e.g., firewalls and data 
encryption), data protection, tenant isolation, and multi-tenancy on bare-metal 
environments. The DPUs also provide telemetry collection, storage virtualization, and 
system management functions that are fully isolated from the host, and therefore do 
not consume any CPU or GPU cycles.  

Together, these technologies enable Cloud Native Supercomputing (CNSC), combining 
bare-metal performance and high data center efficiency with a modern zero-trust model 
for security isolation and multi-tenancy. CNSC includes storage virtualization for remote 
storage allocation as well as implementation of tenant Service Level Agreements (SLAs) 
such as rate-limiting, bandwidth-guarantees, and reservation of network resources 
based on tenant isolation and other requirements. 

Advanced visibility is critical when operating at large-scale. NVIDIA BlueField-3 extends 
traditional monitoring tools by providing deep and instantaneous real-time visibility into 
every node. The NVIDIA DOCA Telemetry Service (DTS) is a containerized telemetry 
agent that supports collecting and exporting data from a wide range of providers at the 
operating system and network levels, including core and non-core Performance 
Monitoring Units, and the Baseboard Management Controller (BMC). This enables the 
characterization of user workloads and operators to detect and respond to system 
health and application performance issues and potential cyberattacks. 

Figure 3 shows the MGX with GH200 without NVLink Switch System. NVLink-C2C 
provides hardware coherency within a Grace Hopper Superchip. Each node contains one 
Grace Hopper Superchip and one or more PCIe devices like NVMe Solid-State Drives and 
BlueField-3 DPUs, NVIDIA ConnectX-7 NICs, or OEM-defined I/O. These nodes are 
designed for scale-out ML and HPC. With 16x PCIe Gen 5 lanes, an NDR400 InfiniBand 
NIC provides up to 100GB/s of total bandwidth across the Superchips. 

https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/spectrumx/
https://www.nvidia.com/en-us/networking/spectrumx/
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://www.nvidia.com/en-us/networking/products/cloud-native-supercomputing/
https://docs.nvidia.com/doca/sdk/doca-telemetry-service/index.html
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The configuration in Figure 3 simplifies cluster management. It is designed for 
workloads that can leverage the strong compute capabilities of NVIDIA Grace Hopper 
and are also not bottlenecked by the network communication overhead of InfiniBand, 
which is one of the fastest network interconnects available, but is still a traditional 
RDMA-accelerated network. 

 

Figure 3. NVIDIA MGX with Grace Hopper Superchip system with 
InfiniBand networking for scale-out ML and HPC workloads 

NVIDIA DGX GH200 AI Supercomputer 
Ideal for strong-scaling giant AI LLM and Recommender Workloads 
NVIDIA DGX™ GH200 ushers in a new epoch in AI as a new class of AI supercomputer 
that fully connects 256 NVIDIA Grace Hopper™ Superchips into a singular GPU. 
Designed to handle trillion-parameter and terabyte-class AI models for massive 
recommender systems, generative AI, and graph analytics, DGX GH200 breaks through 
the memory constraints of a single accelerated system and offers a GPU memory space 
of up to 144 terabytes (TB), providing developers with nearly 500X more memory to build 
massive models. 

The NVIDIA DGX GH200 with NVLink Switch System shown in Figure 4 enables each 
Hopper GPU to communicate with any other GPU in the NVLink domain at 900GB/s total 
bandwidth. NVLink TLBs enable a single GPU to address all the NVLink connected 
memory, that is, up to 144TB of memory for a 256-node NVLink connected system. Up 
to 256 Superchips can be connected using NVLink in a pod, and InfiniBand NICs and 
switches connect multiple superchip pods together. NVLink-C2C and the NVLink Switch 
System provide hardware consistency across all superchips within the NVLink-
connected domain. 

The high bandwidth and lower latencies of NVLink paired with memory consistency 
across all NVLink-connected GPUs and the ability to address up to 144TB of memory 
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using direct loads, stores, and atomic operations, makes this system configuration ideal 
for strong-scaling machine learning and HPC workloads, and training giant AI models. 

 

Figure 4. NVIDIA DGX GH200 with NVLink Switch System for strong-
scaling giant ML workloads  

NVIDIA MGX with GH200 Comparisons 
Table 2 compares the speeds and feeds of x86+Hopper, NVIDIA MGX with GH200, and 
NVIDIA DGX GH200 with the NVLink Switch System, normalized by the number of 
Hopper GPUs in each system. 

The NVIDIA MGX with GH200 delivers 3.5x higher CPU memory bandwidth per GPU than 
x86+Hopper due to the 1:1 GPU to CPU ratio and the high LPDDR5X bandwidth of 
NVIDIA Grace CPU. NVIDIA Grace Hopper’s NVLink-C2C provides 7x higher GPU-CPU link 
bandwidth per GPU over PCIe Gen 5. The NVLink Switch System achieves up to 9x higher 
GPU to GPU total bandwidth than InfiniBand NDR400 NICs connected via x16 PCIe Gen5 
lanes. This significant reduction in the amount of compute required to hide memory 
transfers makes the system easier to program and improves the performance of GPU-
CPU bandwidth bound applications. 
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Table 2. NVIDIA MGX with GH200 vs. NVIDIA x86+Hopper 

Feature per GPU 

HGX H100 
4-GPU 
(x86) 

NVIDIA MGX 
with GH200 
and HBM3 

NVIDIA MGX 
with GH200 
and HBM3e 

NVIDIA DGX 
GH200 

CPU Memory 
bandwidth (GB/s / 
GPU) 

Up to 150 Up to 500 Up to 500 Up to 500 

GPU Memory 
bandwidth (GB/s / 
GPU) 

3000 4000  4800 4000 

CPU Memory 
bandwidth to GPU 
Memory bandwidth 
ratio 

5% 12.5% 10.4% 12.5% 

GPU-CPU Link bi-
directional bandwidth 
(GB/s / GPU) 

128  

(x16 PCIe 
Gen5) 

900 

(NVLink-C2C) 

900 

(NVLink-C2C) 

900 

(NVLink-C2C) 

GPU-GPU bi-
directional bandwidth 
inter node (GB/s / GPU) 

100  

(InfiniBand 
NDR400) 

100  

(InfiniBand 
NDR400) 

900 

(NVLink 4 for 
dual GH200 
with HBM3e) 

100  

(InfiniBand 
NDR400) 

900  

(NVLink 4) 

These improvements in CPU ratio, and NVLink-C2C and NVLink Switch System 
performance redefine how we achieve maximum performance from heterogeneous 
systems, enabling new applications, and efficient solutions to challenging problems. 
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NVIDIA GH200 Architecture  
 

This section covers the main architectural features of the NVIDIA GH200 including: 
NVLink-C2C, NVLink Switch System, Extended GPU Memory (EGM), and the superchip 
flexible computing capabilities. 

NVLink-C2C  
The NVLink Chip-2-Chip (C2C) interconnect provides a high-bandwidth direct connection 
between a Grace CPU and a Hopper GPU to create the Grace Hopper Superchip, which is 
designed for drop-in acceleration of AI and HPC applications. With 900GB/s of 
bidirectional bandwidth, NVLink-C2C provides 7x the bandwidth of x16 PCIe Gen links at 
lower latency. NVLink-C2C also only uses 1.3 picojoules per bit transferred, which is 
greater than 5x more energy efficient than PCIe Gen 5.  

Furthermore, NVLink-C2C is a coherent memory interconnect with native hardware 
support for system-wide atomic operations. This improves the performance of memory 
accesses to non-local memory, such as CPU and GPU threads accessing memory 
resident in the other device. Hardware coherency also improves the performance of 
synchronization primitives, reducing the time the GPU or CPU wait on each other, 
increasing total system utilization. Finally, hardware coherency also simplifies the 
development of heterogenous computing applications using popular programming 
languages and frameworks as elaborated in the NVIDIA Grace Hopper Programming 
Model section below. 

NVLink Switch System in DGX GH200 
NVIDIA NVLink Switch System combines fourth-generation NVIDIA NVLink technology 
with the new third-generation NVIDIA NVSwitch. A single level of the NVSwitch connects 
up to eight Grace Hopper Superchips, and a second level in a fat-tree topology enables 
networking up to 256 Grace Hopper Superchips with NVLink. 
 
Fourth generation NVIDIA NVLink enables GPU threads to address up to 144TB of 
memory provided by all superchips in the NVLink network using normal memory 
operations, atomics, and bulk transfers. Communication libraries like MPI, NCCL, or 
NVSHMEM transparently leverage the NVLink Switch System when available.  
 
NVIDIA NVLink Switch System connects each Grace Hopper Superchip to the network at 
900GB/s total bandwidth. That is, a Grace Hopper Superchip pair exchanges data at up 
to 900GB/s. With up to 256 Grace Hopper Superchips, the network delivers up to 
115.2TB/s all-to-all bandwidth. This is 9x the all-to-all bandwidth of InfiniBand NDR400, 
and 4.5x the all-reduce throughput. 
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The incredible one FP16 exaflop delivered by 256x Grace Hopper Superchips combined 
with the 115.2TB/s of all-to-all bandwidth provided by the NVLink Switch System and up 
to 144TB of directly addressable memory enables training giant AI models and strong 
scaling HPC and AI workloads. 

Accelerating Applications with Extended GPU Memory 
The NVIDIA GH200 is designed to accelerate applications with exceptionally large 
memory footprints, larger than the capacity of the HBM3 / HBM3e and LPDDR5X 
memory of a single superchip (see the NVIDIA GH200 Accelerated Applications section 
below). 

The Extended GPU Memory (EGM) feature over the high-bandwidth NVLink-C2C enables 
GPUs to access all the system memory efficiently. EGM provides up to 144TBs system 
memory in a multi-node NVSwitch-connected system. With EGM, physical memory in the 
system can be allocated to be accessible from any GPU thread. All GPUs can access EGM 
at the minimum of GPU-GPU NVLink or NVLink-C2C speed. 

Memory accesses within a Grace Hopper Superchip configuration go through the local 
high-bandwidth NVLink-C2C at 900GB/s total. Remote memory accesses are performed 
via GPU NVLink, and depending on the memory being accessed, also NVLink-C2C as 
shown in Figure 5. With EGM, GPU threads can now access all memory resources 
available over the NVSwitch fabric, both LPDDR5X and HBM3 or HBM3e, at 450GB/s. 

 

 

Figure 5. Memory Accesses across NVLink-connected Grace Hopper 
Superchips 

Flexible Architecture Built for Peak Performance  
The NVIDIA Grace Hopper Architecture is flexible and enables applications ranging from 
large scale-out deep learning training and HPC workloads, to small inference workloads 
requiring Quality of Service (QoS).  

The NVIDIA GH200 system can balance power between the NVIDIA Grace CPU and the 
Hopper GPU. The Grace Hopper Superchip enables building supercomputing systems 

bookmark://_NVIDIA_Grace_Hopper/
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with a 1:1 GPU-CPU ratio that are power efficient and excel at GPU-heavy, CPU-heavy, 
and truly heterogeneous workloads. NVIDIA Grace Hopper nodes enable uniform 
systems to be built with higher peak performance, lower maintenance, and lower 
administration overheads.  

The NVIDIA Grace CPU supports Memory Resource Partitioning and Monitoring (MPAM) 
features that provide performance isolation between jobs. MPAM enables users and 
administrators to partition the available LPDDR5X bandwidth and CPU cache usage. 
NVIDIA Multi-Instance GPU (MIG) allows partitioning of the Hopper GPU into smaller 
instances. Together MPAM and MIG can be used to partition system resources for 
improved QoS. 

NVIDIA Grace Hopper Superchip Performance Monitoring Units (PMU) adhere to the 
ARM PMU architecture specification standards (Arm v8.5 PMUv3) for capturing 
performance metrics and are exposed via standard Linux performance tool interfaces 
like Linux perf. They provide a uniform and programmable approach for capturing 
performance metrics for the Grace CPU and Grace Hopper Superchip in a single pass. 
Single pass metric collection is performed at extremely low overhead with little CPU 
polling while supporting all features required for confidential computing. The metrics 
cover CPU core and caches, system caches, memory bandwidths, utilization, throughput, 
and latencies for GPU, CPU, NVLink-C2C, PCIe, and DRAM. 
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NVIDIA GH200 Programming Model 
Traditional heterogeneous platforms with PCIe-connected accelerators require users to 
follow a complex programming model that involves manually managing device memory 
allocations and data transfer to and from the host.  

The NVIDIA GH200 is a heterogeneous platform that is easy to program, and NVIDIA is 
committed to making it accessible to all developers, independent of their programming 
language of choice. Both the GH200 and the Platform are built to enable developers to 
pick the right language for the task at hand, and the NVIDIA libNVVM API enables 
developers to bring their preferred programming language to the CUDA platform with 
the same level of code-generation quality and optimizations as NVIDIA compilers and 
tools. 

The languages provided by NVIDIA for the CUDA platform, as shown in Figure 6 include 
accelerated standard languages like: 

• ISO C++ 

• ISO Fortran 

• Python 

And directive-based programming models like:  

• OpenACC  

• OpenMP 

• CUDA C++  

• CUDA Fortran 

 

Figure 6. NVIDIA GH200 Grace Hopper Superchip Programming Model 

NVIDIA is an important contributor to the ISO standardization processes of C++ and 
Fortran. We have worked together with these communities to enable ISO compliant C++ 
and Fortran applications to effectively program NVIDIA CPUs and NVIDIA GPUs without 
any language extensions. 
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This technology heavily relies on our hardware-accelerated memory coherency provided 
by NVIDIA NVLink-C2C and NVIDIA Unified Virtual Memory to lift the restriction of 
traditional PCIe-connected accelerated platforms. 

On Linux systems with the Heterogeneous Memory Management (HMM) extension, the 
NVIDIA CUDA platform provides the same unified programming model as NVIDIA Grace 
Hopper. When running on NVIDIA Grace Hopper, these applications transparently 
benefit from the higher-bandwidth, lower-latency, higher atomic throughput, and 
hardware acceleration for memory coherency provided by NVLink-C2C. 

Hardware Accelerated Memory Coherency 
In PCIe-connected x86+Hopper systems, the CPU and the GPU have independent per-
process page tables, and system-allocated memory is not directly accessible from the 
GPU (Figure 7). When a program allocates memory with the system allocator on the host, 
the page entry of the allocation is not available in the GPU’s page table and accessing it 
from GPU threads fails1.  

 

Figure 7. NVIDIA Hopper System with Disjoint Page Tables 

In NVIDIA Grace Hopper Superchip-based systems, Address Translation Service (ATS) 
enables the CPU and GPU to share a single per-process page table, enabling all CPU and 
GPU threads to access all system-allocated memory (Figure 8), which can reside on 
physical CPU or GPU memory. The CPU heap, CPU thread stack, global variables, 

 

 
1 Applications can lock the pages and register them with the CUDA driver using APIs like 
cudaHostRegister, but these API calls are expensive, they prevent memory migration, and the 
amount of pinned memory available is a scarce resource. 
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memory-mapped files, and inter-process memory are accessible to all CPU and GPU 
threads. 

 

 

Figure 8. ATS in an NVIDIA Grace Hopper Superchip System 

NVIDIA NVLink-C2C hardware-coherency enables the Grace CPU to cache GPU memory 
at cache-line granularity and for the GPU and CPU to access each other’s memory 
without page-migrations. NVLink-C2C also accelerates all atomic operations supported 
by the CPU and GPU on system-allocated memory. Scoped atomic operations are fully 
supported and enable fine-grained and scalable synchronization across all threads in the 
system. 

The runtime backs system-allocated memory with physical memory on first touch, either 
on LPDDR5X or HBM3 / HBM3e, depending on whether a CPU or a GPU thread accesses 
it first. From an OS perspective, the Grace CPU and Hopper GPU are just two separate 
NUMA nodes. 

System-allocated memory is migratable, i.e., the runtime can change its physical memory 
backing to improve application performance (Figure 9) or deal with memory pressure. 
Hardware access counters allow delayed migrations over a page-fault-based method so 
that only hot pages are migrated.  
 

 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous_operation
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Figure 9. Access-Frequency-Based Automatic Memory Migration 

Network and storage devices connected via non-coherent PCIe lanes have several 
methods for performing Direct Memory Access (DMA) and Remote DMA (RDMA) on 
system-allocated memory. On-Demand Paging (ODP) is an RDMA extension supported 
by NVIDIA InfiniBand Networking products like BlueField-3 and ConnectX-7 that allows 
devices to track pages being migrated. It enables communication and storage libraries 
such as MPI, HPC-X, NCCL, NVSHMEM, UCX, MAGNUM IO, and GPUDirect Storage to 
perform efficient zero-copy I/O operations on system-allocated memory without having 
to stage transfers through separate buffers.  

CUDA-specific memory APIs provide users with guarantees about where the memory 
resides, which threads can access it, whether it is migratable, and many other features 
that enable users to extract all the performance the hardware has to offer. Applications 
can hint the system about their memory access patterns, for example, using CUDA 
and/or NUMA APIs, to enable the users to perform application-specific optimizations. 
NUMA memory hints enable applications to inform the runtime about their memory 
access patterns. 

Memory Access in NVLink Switch System 
On Grace Hopper Superchips connected with NVLink Switch Systems, GPU threads can 
address peer HBM3 / HBM3e and LPDDR5X memory from other Grace Hopper 
Superchips in the NVLink network via an NVLink page table (Figure 10). CUDA APIs allow 
applications to map memory from remote nodes into the current process and then 
perform load, stores, atomics, and as well as bulk memory transfers to directly access 
the memory. 

 

 

https://developer.nvidia.com/networking/hpc-x
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://openucx.org/
https://developer.nvidia.com/magnum-io
https://developer.nvidia.com/gpudirect-storage
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1ge8dc9199943d421bc8bc7f473df12e42
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1ge8dc9199943d421bc8bc7f473df12e42
https://man7.org/linux/man-pages/man3/numa.3.html
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Figure 10. GPU threads address peer memory from other superchips in 
the NVLink Switch network 

NVIDIA CUDA Platform 
The NVIDIA CUDA platform (Figure 11) is optimized for Arm CPUs, the NVIDIA Grace 
CPU, and of course, the NVIDIA GH200 and NVIDIA NVLink Switch System. NVIDIA CUDA 
is a comprehensive, productive, and high-performing platform for accelerated 
computing.  

It accelerates end-user applications at all levels, from system software to application-
specific libraries and frameworks, using all hardware available including GPUs, CPUs, 
DPUs, and in-network computing (Figure 11). The CUDA platform has mature and user-
friendly toolchains, developer tools, and documentation. It provides the best developer 
experience for accelerating applications on heterogeneous platforms.  
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Figure 11. NVIDIA CUDA Platform and its ecosystem 

The NVIDIA Grace Hopper system is designed from the ground up to accelerate 
applications on the CUDA platform. Applications that run correctly on the NVIDIA Arm 
HPC developer kit continue to do so in Grace Hopper-based systems and immediately 
benefit from its memory coherent high-performance NVLink-C2C, NVLink Switch 
System, and high-bandwidth access to large amounts of memory. 

NVIDIA is actively engaged with the broader developer community to ensure that the 
Arm ecosystem meets users’ requirements. The whole NVIDIA software stack is available 
for Arm server CPUs, including NVIDIA Grace CPU. Every CUDA component available on 
x86 today has Arm-native installers and containers. The NVIDIA GPU Cloud™ (NGC) 
provides DL, ML, and HPC containers optimized for Arm platforms. 

 

https://developer.nvidia.com/developer-program
https://developer.nvidia.com/hpc-sdk
https://ngc.nvidia.com/catalog/containers/nvidia:nvhpc/tags
https://catalog.ngc.nvidia.com/containers
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Figure 12. Performance Simulations for GH200 with HBM3 vs 
x86+Hopper for end-user applications. Datasets and details 
described in the individual application section below. 

NVIDIA GH200 Grace Hopper Superchip main architectural features are its NVLink-C2C 
interconnect, which provides memory coherency within the superchip enabling Extended 
GPU Memory (EGM), and NVLink Switch System which extends EGM beyond a single 
superchip. NVLink Switch System and NVLink-C2C are high-bandwidth and low-latency 
interconnects, providing up to 900GB/s total bandwidth when accessing up to 144TB of 
memory. NVIDIA Grace Hopper also provides a 1:1 GPU-to-CPU ratio, making the 
platform excel at GPU-heavy, CPU-heavy, and truly heterogeneous workloads that 
intensely engage both the GPU and the CPU. 

This section highlights how these unique hardware features accelerate major 
applications shown in Figure 12, enable new applications, and improve developer 
productivity when writing new applications or incrementally accelerating already-
existing ones on the GPU.  

We highlight major algorithmic motifs like out-of-core processing, concurrent CPU and 
GPU processing, and applications with higher CPU performance requirements. We 
include examples within major fields like machine learning (natural language processing, 
recommender systems, Graph Neural Networks), databases, HPC (weather, climate, fluid 
dynamics, molecular dynamics, linear solvers), and the intersection of HPC with AI.  

 

1

2

3

4

5

G
H

20
0 

vs
 x

86
+H

op
pe

r

1.3x

2.7x

3.6x

4.4x

1.9x

3.5x

4.5x

AI workloads HPCDatabases



NVIDIA GH200 Accelerated Applications 

 

23 

NVIDIA Grace Hopper Superchip Architecture 

Inference for Large Language Models (LLM) 

Higher CPU to GPU Bandwidth, MGX with GH200 and HBM3 
Inferencing for large language models requires a large memory capacity for storing 
model weights and intermediate results during the inference process. As the batch size 
of inference increases to accommodate growing demand of LLMs, the memory 
requirements also increase. 

One way to address the memory requirements is to scale out to multiple GPUs or use 
CPU memory to offload parts of the model layers. With an x86 host CPU, accessing 
system memory for tensor offloading can become bottlenecked by PCIe. NVIDIA NVLink-
C2C provides the Hopper GPU with high-bandwidth access to LPDDR5X memory. This 
significantly reduces the exposed tensor offloading execution time in the critical path 
and enables inference of LLMs at GPU throughput. 

As shown in Figure 13, with batch size of 1, GH200 with HBM3 improves performance 
for LLM inference by 2x due to higher GPU memory bandwidth of H100 GPU in GH200 
with HBM3 vs H100 PCIe GPU. As the batch size increases, the amount of memory 
required for inferencing also increases. At batch size 4, the performance of PCIe based 
inference solutions tanks as PCIe becomes the main bottleneck, however for GH200, the 
NVLink-C2C consistently feeds data to the H100 GPU at high bandwidth, delivering 4.5x 
throughput compared to the baseline PCIe solution. 

 

 

Figure 13. A performance simulation for LLM inference GPT3 65B LLM 
Model implemented with offloading. 
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Recommender Systems 

Higher CPU to GPU Bandwidth and NVLink, DGX GH200 
Modern recommender system models require substantial amounts of memory for 
storing embedding tables. Embedding tables contain semantic representations for items 
and users' features, which help provide better recommendations to consumers. 
Generally, these embeddings follow a power-law distribution for frequency of use since 
some embedding vectors are accessed more frequently than others. 

NVIDIA GH200 enables high-throughput recommender system pipelines that store the 
most frequently used embedding vectors in HBM3 memory, and the remaining 
embedding vectors in the higher-capacity LPDDR5X memory. The NVLink-C2C 
interconnect provides Hopper GPUs with high-bandwidth access to their local LPDDR5X 
memory, while the NVLink Switch System extends this to provide Hopper GPUs with 
high-bandwidth access to all LPDDR5X memory of all Grace Hopper Superchips in the 
NVLink network.  

Figure 14 shows the performance improvement delivered by the DGX GH200 with 
NVLink Switch System over an equivalent x86+Hopper system for two Deep Learning 
Recommendation Model (DLRM) model sizes, 4.5TB (1.5x speedup, left) and 27TB (3.5x 
speedup, right).  

For the 27TB large model, in both the x86+Hopper and NVIDIA Grace Hopper cases, 
most network communication is hidden behind the computations accessing the 
embedding tables. However, when the embedding computation is accelerated with 
NVLink-C2C, the communication must scale to avoid becoming the bottleneck. The 
NVLink Switch System on DGX GH200 accelerates all communication and achieves just 
that. For the smaller 4.5TB model, a significant part of communication is exposed on the 
x86+Hopper system. This communication gets accelerated over the NVLink Switch 
system on DGX GH200 when strong scaling to 128 GPUs. 
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Figure 14. A performance simulation for large DLRM network model 
with 4.5TB and 27TB model size, 128 GPUs, and embeddings 
offloaded to CPU memory. 

Graph Neural Networks 

Higher CPU to GPU Bandwidth, MGX with GH200 and HBM3 
Graph Neural Networks (GNNs) leverage message passing to extract information from 
data that is formed from individual nodes and their relation to each other, by repeatedly 
gathering information from neighboring nodes and transforming the aggregated 
representations. While this scheme is related to convolutional neural networks (CNNs) 
applied to image data, GNNs do so for arbitrary neighborhoods representing nodes in 
large networks of interactions at a large scale. GNNs therefore must cope with large 
datasets consisting of hundreds of millions of nodes and billions of edges. Besides the 
sheer scale of graph data, the arbitrariness of graph neighborhoods leads to irregular 
memory accesses to contiguous embedding tables and makes distributing the dataset 
across multiple GPUs challenging. Especially when data does not fit into the memory of a 
single GPU, or even of a single node. 

We studied the performance of GraphSAGE which is a model for node property 
prediction, with potential applications in biomedical contexts (e.g., drug discovery) or the 
financial service industry (e.g., fraud detection). To demonstrate the benefits of the 
CPU-GPU NVLink of Grace Hopper, we show the performance on an augmented version 

https://arxiv.org/pdf/1706.02216.pdf
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of the ogbn-products dataset having 626M nodes and 31B edges, coming to about 
500GB in size. 

NVIDIA GH200 with HBM3 accelerates GNN training with its high-bandwidth access to 
LPDDR5X through its NVLink-C2C interconnect. This allows large graph datasets to be 
stored in pinned memory and accessed efficiently. Our experiments show that Grace 
Hopper can provide 1.9x performance gains over x86+Hopper systems as shown in 
Figure 15. 

 

Figure 15.  A performance simulation shows normalized runtime per 
batch of a GraphSAGE model for an augmented ogbn-
products dataset of 626 M nodes and 31 B edges 

Databases 

Higher CPU to GPU Bandwidth with Address Translation Service 
(ATS), MGX with GH200 and HBM3 
Traditionally, GPU memory capacity limited the dataset sizes GPUs can operate on at 
high performance. Database workloads operate on exceptionally large input tables that 

https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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cannot fit in GPU memory, so performance is often limited by the CPU-GPU data 
transfer due to low PCIe bandwidth. 

The Grace Hopper NVLink-C2C excels at databases, analytical workloads, and the Extract 
Transform Load (ETL) stages of ML applications. GPUs can now directly operate on 
datasets located in CPU memory at high speed, eliminating the PCIe bottleneck (Figure 
16). Support for a rich set of atomic operations enables new coprocessing opportunities. 
For example, the CPU and the GPU can concurrently build a shared hash table for join 
and group by accessing both HBM3 and LPDDR5X.  

Because GPUs can access all system-allocated memory, integrating GPU applications 
with pre-existing databases running on the CPU is easier than ever and provides 
performance benefits. 

 

 

Figure 16. Performance simulations for Hash Join with input tables in 
CPU Memory (left) and host-to-device transfer of pageable 
host-resident memory (right) 

 

Large GPU database applications often need to process databases larger than the 
system memory capacity and strongly prefer to map those as pageable memory. On 
platforms without Address Translation Services (ATS), DMA transfers between CPU 
resident pageable memory must be staged through a host-pinned buffer for 
correctness: the pageable memory could be paged to disk, and this would cause the 
DMA to access the wrong physical memory. That is, the performance of host-to-device 
memory transfers on non-coherent platforms is limited by: min (single-threaded CPU 
memcpy Bandwidth, PCIe Bandwidth). The single-threaded CPU DRAM Bandwidth of 
modern CPUs is in the 20-40GB/s range and barely suffices to saturate PCIe Gen4 BW. 
PCIe Gen5 provides 64GB/s host-to-device bandwidth that these database applications 
cannot benefit from.  

The ATS feature of the Grace Hopper Superchip enables the memory transfer 
accelerators to transfer pageable memory between the host and device without staging 
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through a pinned memory buffer on the host using multiple CPU threads, or without 
pinning the memory buffer before the transfer using APIs like cudaHostRegister. With 
ATS, the performance of host-to-device memory transfers is limited only by the NVLink-
C2C bandwidth between Grace and Hopper. The performance impact is projected in 
Figure 16 and highlights how applications transparently benefit from Grace Hopper 
features like ATS without any application-side changes. 

The performance simulation for the Grace Hopper Superchip system with HBM3 uses 
the NVLink-C2C raw bandwidth. While the attainable bandwidth is often lower, it is not 
impacted by single-threaded CPU STREAM COPY Bandwidth. 

Partially Accelerated Applications 

Higher CPU to GPU Bandwidth with Easier Incremental Porting, MGX 
with GH200 and HBM3 
Multiphysics, quantum chemistry, and climate applications are large and complex. For 
example, weather and climate applications contain physical models for different 
phenomena like wind, clouds, distinct types of precipitation, evaporation, groundwater, 
solar radiation, ice, and oceans. Accelerating these applications with GPUs is an 
incremental and time-consuming process. Moving the entire application to GPU is often 
complicated and the performance benefits often diminish once the most 
computationally expensive modules are ported to the GPU.  

The new unified NVIDIA Grace Hopper programming model presents opportunities for 
incremental porting of computationally expensive parts to the GPU, while leaving 
computationally inexpensive parts for the CPU to process, such as rarely used codes, or 
code that do not generate enough GPU work. 

The NVIDIA Grace Hopper programming model enables the whole application to work on 
the same memory, simplifying incremental acceleration. At the same time, NVLink-C2C 
improves the performance of porting techniques, for example, redirecting BLAS library 
calls to NVBLAS.  

ABINIT is a material science application that simulates Density Function Theory using 
standard BLAS calls. Figure 17 shows the performance impact of “drop-in” acceleration 
by executing standard BLAS calls on the GPU using NVBLAS. Because GPU threads 
access CPU memory at high bandwidth, porting techniques can avoid memory 
allocations and data transfer overheads. Grace CPU’s memory bandwidth and powerful 
compute performance deliver excellent performance to the parts of these applications 
that are better suited for CPUs, or not worth accelerating (see Table 1). 

  

https://docs.nvidia.com/cuda/nvblas/index.html
https://www.abinit.org/
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Figure 17. A performance simulation for ABINIT with NVBLAS featuring 
Titanium 255 Atoms using the LOBPCG algorithm. 

OpenFOAM is a popular C++ toolbox for developing CFD and multiphysics solvers. When 
running on x86 CPUs, the pressure solver of OpenFOAM takes roughly 35% of the 
execution time of the OpenFOAM HPC Motorbike. After accelerating the pressure solver 
using AmgX and Hopper GPU, only 15% of the total runtime uses the GPU. The 
remaining 85% of the execution time is CPU-only and involves a mix of preprocessing, 
matrix assembly, and small linear solves. 

https://www.openfoam.com/
https://www.esi-group.com/sites/default/files/resource/other/1804/8th_OpenFOAM_Conference_Cineca_Spisso_1.pdf
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Figure 18. A performance simulation for OpenFOAM HPC Motorbike L 
(34 M cells) on MGX with GH200 with HBM3 

The HPC Motorbike L case (a scaled-up version of the OpenFOAM Motorbike tutorial) is 
representative of typical engineering workloads, with a flatter profile and more time 
spent in turbulence calculations. The GPU portion of the code is still being optimized, but 
due to the substantial proportion of time spent in CPU-bound work, the Grace Hopper 
case provides significant speedup (Figure 18). 

Molecular Dynamics: GROMACS 

High-Bandwidth NVLink Switch System, DGX GH200 

NVIDIA is a strong GROMACS contributor with an excellent track record in accelerating 
molecular dynamics simulations. Together with our collaborators, we have recently 
accelerated the Particle Mesh-Ewald (PME) implementation with multiple GPUs. It is 
expected to be available in the GROMACS 2023 release. 

The implementation assigns one GPU to PME for every three or four GPUs assigned to 
PP. PME rank uses the NVIDIA accelerated multi-node FFT library, cuFFTMp, which is 
part of the NVIDIA HPC SDK, and is bottlenecked by inter-node bandwidth. Historically, 
InfiniBand has been the fastest and most efficient external networking method to 
connect nodes and servers, but significant performance gains are possible by 
connecting all the nodes using NVLink.  

https://developer.nvidia.com/hpc-sdk
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Figure 19 compares the projected performance improvements of Grace Hopper systems 
with NVLink Switch System for GROMACS stmv benchmark with 1,066,628 atoms, 
against the performance of an MGX with H100 and InfiniBand HDR-200 network 
connections across nodes. Figure 19 (left) shows the normalized speedups of the 
different components of a PME time-step using 32 GPUs. FFT and PME-PME 
communication are sensitive to inter-node communication bandwidth and benefit from 
a 1.3x NVLink Switch System speedup. Figure 19 (right) shows the total normalized 
speedup for a varying number of GPUs. 

 

 

Figure 19. Performance simulations for GROMACS stmv Benchmark on 
DGX GH200 with HBM3 

For more details about GROMACS GPU implementation, see Pall et al. “Heterogeneous 
Parallelization and Acceleration of Molecular Dynamics Simulations in GROMACS” and 
the NVIDIA Technical Developer Blog articles by Gray et al. “Creating Faster Molecular 
Dynamics Simulations with GROMACS 2020” and “Maximizing GROMACS Throughput 
with Multiple Simulations per GPU Using MPS and MIG”. 

Applications that perform FFTs are ideal candidates for being accelerated with Grace 
Hopper Superchip with NVLink Switch System. FFTs require high bandwidth all-to-all 
communications between GPU nodes. Figure 20 shows performance gains with Grace 
Hopper NVLink Switch System for FFTs of various sizes. It compares a Grace Hopper 
system with InfiniBand NDR400 versus a DGX GH200 system. 

https://doi.org/10.1063/5.0018516
https://doi.org/10.1063/5.0018516
https://developer.nvidia.com/blog/creating-faster-molecular-dynamics-simulations-with-gromacs-2020/
https://developer.nvidia.com/blog/creating-faster-molecular-dynamics-simulations-with-gromacs-2020/
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig/
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig/
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Figure 20. Speedup of DGX GH200 versus InfiniBand NDR400 on NVIDIA 
MGX with GH200 and HBM3 for 3D FFTs of different sizes 

Multi-Grid Linear Solvers 

Easier CPU and GPU Coordination 
Linear solvers are probably the most common tool in scientific computing applications. 
Multigrid iterative methods deliver linear complexity by solving problems at different 
resolutions and smoothing low-frequency errors using coarser grids (Figure 21). 

The V-cycle (left) iteratively smoothens the error, propagating the residual to the 
coarsest grid (left, bottom). A direct solver computes the error at the coarsest level, and 
the V-cycle iteratively interpolates and smoothens it up to the finer grids (left, top). The 
F-cycle (right) accelerates the convergence with successively finer V-cycles, resulting in 
coarser grid solves than in the classical V-cycle. 
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Figure 21. GH200 Simplifies Multigrid Linear Solvers 

Fine levels with many grid points run efficiently on throughput-oriented parallel 
architectures like GPUs. Coarse levels with few grid points are latency-limited on GPUs 
because they do not have enough work to utilize the available resources fully. A hybrid 
GPU-CPU scheme with a grid-size threshold ensures that coarse levels are executed on 
the latency-optimized Grace CPU (Figure 21 right). 

When combined with adaptive mesh refinement and dynamic load balancing, data 
structures in multigrid solvers have deep hierarchies of pointers, and explicit data 
movement is challenging because of the indirect accesses. The NVIDIA Grace Hopper 
coherent programming model simplifies these applications and improves performance 
by allowing the GPU and CPU kernels to efficiently access all data and work on the same 
data structures without explicitly moving data around. This simplifies the 
implementation of switching between GPU and CPU kernels at a grid size threshold, 
while reducing the penalty for switching between processors, because both the GPU and 
CPU have fast access to system-allocated memory. 
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Appendix A: NVIDIA CUDA Platform 
NVIDIA CUDA® is a comprehensive, productive, and high-performing platform for 
accelerated computing. It accelerates end-user applications at all levels, from system 
software to application-specific libraries and frameworks, using GPUs, CPUs, DPUs, and 
in-network computing. The CUDA platform has mature and user-friendly toolchains, 
developer tools, and documentation. It provides the best developer experience for 
accelerated heterogeneous applications.  

CUDA System Software 
The CUDA platform provides flexible system software components that help users 
deploy, manage, and optimize large heterogeneous systems productively and efficiently. 
The offering includes: 

• Device drivers such as the CUDA driver 

• Device management software such as NVML, NVIDIA System Management 
Interface, DCGM, and Unified Fabric Manager  

• GPUDirect for heterogeneous network and file I/O 

• Container-aware job-scheduling systems and operating systems such as DGX OS 

 

High-Performance Libraries and Frameworks 

NVIDIA Grace Hopper packs an immense amount of computing performance. A suite of 
heterogeneous libraries for compute-intensive applications complements the CUDA 
programming models to make this performance easily accessible. CUDA libraries 
maximize the performance of common math (CUDA Math Library), parallel algorithms 
(CUB and Thrust), linear algebra (cuBLAS), dense and sparse linear solvers (cuSOLVER 
and cuSPARSE), FFTs (cuFFT), random number generation (cuRAND), tensor 
manipulation (cuTENSOR), image and signal processing (NPP), JPEG decoding (nvJPEG), 
and GPU management (NVML). cuNumeric transparently accelerates and distributes 
NumPy programs to machines of any scale through Legate and the Legion runtime 
without any code modifications. libcu++ provides heterogeneous synchronization and 
data-movement primitives to enable highly concurrent, heterogeneous, ISO-standard 
compliant C++ applications. 

In addition, the CUDA platform communication libraries (Figure 11) enable standards-
based scalable systems programming. HPC-X is a CUDA-aware MPI library with support 
for GPUDirect for sending and receiving GPU buffers directly using RDMA and GPU P2P. 
The NVIDIA Collective Communications Library (NCCL) Implements highly optimized 
multi-node collective communication primitives. NVSHMEM is based on OpenSHMEM 
and provides heterogeneous multi-node communication primitives for both host and 

https://developer.nvidia.com/cuda-math-library
https://github.com/NVIDIA/cub
https://developer.nvidia.com/thrust
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cufft
https://developer.nvidia.com/curand
https://developer.nvidia.com/cutensor
https://developer.nvidia.com/npp
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/cunumeric
https://nvidia.github.io/libcudacxx/
https://developer.nvidia.com/networking/hpc-x
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
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device threads. cuFile and NVIDIA MAGNUM IO enable heterogeneous applications with 
high-performance file I/O through GPUDirect Storage. 

An extensive suite of domain-specific libraries and frameworks further accelerates main 
algorithms in a wide range of application domains, for example:  

• Deep neural networks (cuDNN) 

• Linear solvers for simulations and implicit unstructured methods (AmgX) 

• Quantum computing (cuQuantum)  

• Data science 

• Machine learning (RAPIDS)  

• Data loading and preprocessing for machine learning (DALI) 

• Real-time 3D simulation and design collaboration (Omniverse) 

More than 150 Software Development Kits leverage these libraries to help developers 
become highly productive in a large set of application domains, including high-
performance computing (NVIDIA HPC SDK), AI, Machine Learning, Deep Learning, and 
data science, genomics (NVIDIA CLARA), smart cities (NVIDIA Metropolis), autonomous 
driving (NVIDIA Drive SDKs), telecoms (NVIDIA Aerial SDK), robotics (NVIDIA Isaac SDK), 
Cybersecurity (NVIDIA Morpheus SDK), Computer Vision, and many more.  

CUDA Profilers and Debuggers 
The NVIDIA CUDA-GDB tool is an extension to GDB, the GNU Project debugger, and 
provides developers with a mechanism for debugging CUDA applications. The NVIDIA 
Compute Sanitizer is a functional correctness checking suite for highly concurrent CUDA 
kernels that precisely detects and attributes many common memory and thread safety 
errors like misaligned or out-of-bounds memory accesses, shared memory data races, 
uses of uninitialized memory, and invalid usages of synchronization primitives. 

The NVIDIA Nsight™ family of performance analysis tools help users identify coarse- and 
fine-grained optimization opportunities in their applications. NVIDIA Nsight Systems is a 
system-wide performance analysis tool designed to visualize an application’s algorithms 
across many GPUs, CPUs, DPUs, Memory, Network I/O, and File I/O. NVIDIA Nsight 
Systems is fully integrated with the CUDA ecosystem; supporting tracing, sampling, and 
visualizing system, library, and framework API calls, e.g., CUDA, CUDA-X, RAPIDS, 
Magnum-IO, GPU Direct, MPI, UCX, OpenSHMEM, OpenMP, OpenACC, OS events, and 
even call-stack sampling. NVIDIA Nsight Compute is an interactive GPU kernel profiler 
that provides detailed performance and bottleneck analysis for optimizing single kernels 
towards peak GPU performance. 

NVIDIA tools provide the same workflow experience on NVIDIA Grace CPU as on x86, and 
in addition support profiling and optimizing for the NVIDIA Grace Hopper architecture 
and its different single node and multi-node configurations. 

https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://developer.nvidia.com/magnum-io
https://developer.nvidia.com/gpudirect-storage
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/amgx
https://developer.nvidia.com/cuquantum-sdk
https://developer.nvidia.com/rapids
https://developer.nvidia.com/dali
https://www.nvidia.com/en-us/omniverse/
https://developer.nvidia.com/
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/machine-learning
https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/clara
https://developer.nvidia.com/metropolis
https://developer.nvidia.com/drive
https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/isaac-sdk
https://developer.nvidia.com/morpheus-cybersecurity
https://developer.nvidia.com/computer-vision
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
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NVIDIA profilers and debuggers are part of a larger tools and software ecosystem. Users 
should be able to use any tool they know and love on NVIDIA platforms. NVIDIA is a 
strong open-source contributor and Linux perf includes support for NVIDIA Grace 
Hopper Superchip Core and Uncore Performance Monitoring Units (PMUs), as well as 
ARM Statistical Profiling Extensions. 

CUDA Documentation and Training 
The large CUDA software ecosystem is complemented with excellent documentation for 
our programming models, for example, C++ parallel algorithms, libraries, libcu++, 
frameworks, RAPIDS AI, and SDKs, (HPC SDK).  

The NVIDIA Deep Learning Institute (DLI) offers self-paced and live trainings, for 
example, at conferences like Supercomputing and the International Supercomputing 
Conference, that enable individuals to advance their knowledge in AI, accelerated 
computing, accelerated data science, graphics, simulation, and more. DLI trains and 
certifies qualified educators as DLI Ambassadors, at research institutions and HPC 
centers, enabling them to teach and tailor the DLI content to their needs. 

Beyond our official documentation, NVIDIA partners with different communities and 
HPC sites to provide the GPU Hackathon and Bootcamp program. It pairs teams of 
domain scientists and research software engineers (RSEs) with GPU mentors from 
NVIDIA and the HPC community to transfer the software development, parallel 
computing, and optimization skills required to effectively use modern heterogeneous 
computing systems. Every year, NVIDIA holds its GPU Technology Conference (GTC) with 
a focus on educating developers on the latest NVIDIA platform and technology. The talks 
cover NVIDIA programming models, hardware details, and the applications of 
accelerated computing to a wide range of domains. All these talks are recorded and 
available at NVIDIA On-Demand. 

CUDA Language and Compilers 
The CUDA platform exposes a unified and flexible compiler stack for generating highly 
optimized device binaries through the NVIDIA NVVM IR and the NVIDIA libNVVM library. 
NVVM IR is a compiler Intermediate Representation (IR), based on LLVM-IR, providing a 
front-end compiler target for generating GPU compute kernels. libNVVM is a library for 
compiling and optimizing NVVM IR too, the virtual ISA of NVIDIA GPUs. All NVIDIA 
Compute compilers use libNVVM to target NVIDIA GPUs (Figure 22) and it enables users 
and frameworks to bring their programming language of choice to the CUDA platform 
with the same code generation quality and optimization as CUDA C++ itself. 

https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/index.html
https://docs.rapids.ai/
https://docs.nvidia.com/hpc-sdk/index.html
https://www.nvidia.com/en-us/training/
https://gpuhackathons.org/
https://www.nvidia.com/gtc/
https://www.nvidia.com/en-us/on-demand/
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/libnvvm-api/group__compilation.html#group__compilation
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Figure 22. Compiling high-level Languages to PTX with libNVVM 

PTX, the portable virtual ISA of NVIDIA GPUs, is a public ISA targeted by third-party 
producers to run efficiently on our target architectures. PTX also has the advantages of 
being forward compatible and can be assembled offline or at runtime. 

In many applications, the GPU compute kernels to be generated depend on the program 
inputs. While these applications could generate NVVM IR, the NVIDIA Runtime Compiler 
significantly improves the productivity of these applications and their users by allowing 
them to generate familiar CUDA C++ instead. NVRTC compiles CUDA C++, at runtime to 
PTX using libNVVM or to native GPU binary code by using an embedded PTX assembler 
as well. This enables applications, for example, Python programs, to dynamically 
generate kernels for the program a user input and C++ programs, to specialize compute 
kernels at runtime depending on program inputs. 

The NVIDIA HPC SDK is a set of toolchains for heterogeneous systems. NVCC is a CUDA 
C++ compiler and the NVIDIA HPC compilers: NVC, NVC++ and NVFortran. These 
toolchains enable users to pick the right compiler toolchain that is best suited for their 
application. 

 

https://developer.nvidia.com/hpc-sdk
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