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Introduction 
In recent years with the advent of popular social networks like Facebook (1) and LinkedIn, (2) the world’s 

population has become more connected than ever. According to a McKinsey report, (3) there were 5 

billion mobile phones in use in 2010 and 30 billion pieces of content shared on Facebook every month. 

This massive generation of of content, otherwise known as Big Data, has been growing at a rate of 40% 

per year, 80% of which is unstructured data. Organizations are constantly facing challenges in dealing 

with the acquisition, storage, processing and visualization of the stark volume and structure of the data. 

IDC (4) further boosts this claim forecasting that over 90% of data will be unstructured, containing rich 

information that is difficult to analyze. In addition, the total amount of data stored will rise to 2.7 

Zettabytes (ZB), up 48% from 2011. 

The Big Data Puzzle 
Information has traditionally been stored in tables consisting of columns, which represent attributes, 

and rows containing primary value and associated attributes. These relational databases have semantics 

attached to the data which make analysis very fast and easy. Unstructured data, however, lacks such 

inherent semantics which makes it very time consuming and difficult to analyze. This type of data 

includes images, videos, audio files and web enabled workloads among others.  

Organizations are facing a very critical challenge today due to the sheer volume of data being generated 

every year. This data, whether structured or unstructured, can offer invaluable insights and information 

about the internal details of an organization and can serve as a comprehensive knowledge base for 

planning and forecasting. Current data analysis methods prove largely inadequate when looking to gain 

any amount of valuable insight from such large, multi-terabyte, and even petabyte, datasets. Corporate 

sectors such as media, healthcare, manufacturing, and retail are facing the challenge of analyzing this 

data. Using advanced Big Data methods for analysis can lead to significant cost savings. The FBI 

estimates that 10% of transactions within federal healthcare programs, like Medicare and Medicaid, are 

fraudulent and costs nearly $150 billion a year (5). As healthcare data is spread across five humungous 

databases, it is almost impossible to detect a fraud in real time. Oak Ridge National Labs has submitted a 

proposal to unify all these databases to perform fraud detection using the “Jaguar” supercomputer. 

Similar methods can be applied to other domains to effectively detect patterns and behaviors from a 

very large data pool. 

Apache Hadoop and MapReduce 
Processing massive amounts of data requires a parallel compute and storage infrastructure. 

Traditionally, High Performance Computing (HPC) uses Massively Parallel Processing (MPP) to tackle 

computationally intensive problems such as simulation, modeling, weather prediction, protein docking, 

etc. Self-contained compute resources are connected together with high speed interconnects such as 

Infiniband or 10G Ethernet. As nodes do not share physical resources such as memory and CPU, a Shared 

Nothing MPP infrastructure is highly scalable. Google utilizes this approach to scale up and add 

additional nodes without slowing down the network. 
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Figure 1. Share Nothing architecture 

MapReduce is a programming paradigm and parallel programming framework which distributes data 

among multiple commodity nodes and processes it in “data-local” fashion (6). The framework operates 

on data stored in a parallel file system which is easily scalable with additional nodes (7). Apache Hadoop 

is an open source implementation of the MapReduce framework and the file system needed to store the 

data.  Hadoop utilizes the powerful Hadoop Distributed File System (HDFS); a highly scalable, parallel file 

system optimized for very large sequential data sets. Compared to existing high throughput computing 

(HTC) approaches like Condor, which requires a dedicated storage area, HDFS distributes data across all 

nodes within the network. The MapReduce engine distributes the workload across all nodes such that 

the data to be processed is local and effectively works to conserve network bandwidth. HDFS has built in 

protection against rack level failure by means of distributed replication. Each data block in HDFS is 

replicated on different nodes and, due to its rack-aware nature, rack-level and node-level failures do not 

disrupt cluster operations. 

Hadoop follows a master-slave model and consists of following processes: 

 NameNode – Maintains HDFS namespace on master node (1 per cluster). 

 SecondaryNameNode – Performs checkpoint functions and maintains change logs. Can also be 

installed on the master node for a small cluster (1 per cluster). 

 DataNode – Handles all data allocation and replication and is installed on each slave node (1 to 

many per cluster). 

 JobTracker – Schedules job execution and keep track of cluster wide job status (1 per cluster) 

 TaskTracker – Allocates system resources for execution of tasks. Runs on compute nodes in 

conjunction with data node (1 to many per cluster). 
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Figure 2. Typical Hadoop cluster 

AMAX's PHAT-Data (Peta-Scale Hadoop Analytics Technology) (8) provides a complete turnkey solution 

for Apache Hadoop. The PHAT-Data product line offers a highly scalable, tunable and easy to deploy 

platform bundled with Apache Hadoop designed to solve Big Data acquisition, storage and analysis 

problems, and is thoroughly tested and certified production-ready to be deployed on large scale. The 

PHAT-Data turnkey solution includes a complete software stack of Apache Hadoop, configured 

application specific and tuned for optimum efficiency and maximum performance by our dedicated 

Hadoop engineering team. 

Performance tuning for Hadoop 
The Hadoop framework consists of a multitude of components layered horizontally and vertically. For 

optimum performance, each framework parameter needs to be carefully chosen and adjusted based on 

cluster size, type of workload, amount of compute resources available and number and type of hard disk 

drives in each DataNode. Each application has specific nuances which need to be tackled in a unique 

manner as one set of parameters may not be suitable for all workloads. A few points worth considering 

are: 

1. Hadoop operates on large sequential files with very large chunk sizes which usually range from 

128MB to 512MB. To handle such a large logical chunk, the file system should be tested for 
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sequential data write bottlenecks. For example, XFS formats much quicker than ext4 but file 

deletes can be significantly slower in XFS compared to ext4. 

2. HDFS is built around the assumption that failure is a norm rather than exception. Inherent block 

replication features offer protection against node level and rack level failures which makes RAID 

unnecessary for data drives. 

3. Choose the number of mappers, reducers and task slots carefully as too many task slots can 

cause memory exceptions and repeated job failures. Adjust sort buffer size for each map task 

such that sufficient memory is available for the operating system. If the IO buffer is full, the 

buffer is saved on disk resulting in a spill file which can significantly slow down job execution. 

Decide on the number of task slots such that per task buffer size reduces the possibility and 

creation of a spill file. 

4. A workload can be categorized as CPU bound, IO bound or both. Choose a hardware subsystem 

such that the CPU core to memory ratio is optimum.  

5. Since Hadoop operates on large chunk sizes, significant network traffic during shuffle phase and 

replication is probable. Block compression offers an attractive solution to reduce network traffic 

and disk IO without burdening the CPU. 

6. Link aggregation on the network offers an attractive solution for load balancing and automatic 

failover. Ensure that switching infrastructure supports link aggregation and protocol on switches 

is compatible. (e.g. IEEE Link aggregation and control Protocol (LACP) vs Cisco Port Aggregation 

Protocol (PAgP)).  

7. Consider using jumbo frames which reduces network traffic and CPU utilization. NICs with TCP 

offloading can further reduce CPU consumption. 

8. Choice of operating system and Java framework version governs thread and energy efficiency. 

Linux kernel version 2.6.30 onwards and Java 6u14 or later is recommended for a production 

environment.  

Test Cluster Configuration 
The test cluster consisted of 1 master node running NameNode, SecondaryNameNode and JobTracker 

daemons, and 7 data nodes configured as follows: AMAX PHAT-Data 8-node cluster 

 CPU: Intel Xeon X5650 2.67GHz 12MB cache HT Enabled 

 Memory 

o Master: 48GB DDR3 1333MHz, 4GB DIMMs 

o Data Nodes: 24GB DDR3 1333MHz, 4GB DIMMs 

 Storage Controller: LSI MegaRAID SAS 9265-8i RAID Controller 

 Hard disk drives: 6x Seagate Constellation ES 1TB SAS Drives in JBOD configuration 

 File system: ext4 aligned at 4KB block size 

 Linux 

o Distribution: CentOS 6.0 Final amd64 

o Kernel: 2.6.32-71.el6.x86_64 

 nofile=16384 
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 nproc=4096 

 Java: Sun JRE 64 bit 1.6.0_29-b11 

 Network Interfaces 

o 1Gb: Intel 82575EB Gigabit Ethernet Controller 

o 10Gb: Emulex OneConnect (be3) 11102-NX CNA 

 Network switch: Extreme Networks Summit X670V 10Gb switch 

Following is the list of configuration parameters used in benchmark: 

 General parameters 

o Map tasks: 84 

o Reduce tasks: 42 

o Maximum map tasks for one compute node: 12 

o Maximum reduce tasks for one compute node: 6 

 HDFS 

o Block size: 128 MB 

o Namenode handler count: 10 

o Replication factor: 3 

o Permission check: disabled 

 MapReduce 

o Java child options: -Xmx1024m 

o Mapred ulimit: 2097152 

o Slowstart completed maps: 0.5 

o Compression enabled: Block 

o Io sort buffer size: 256MB 

o Io sort factor: 32 

Benchmark procedure 
The test process aims at finding bottlenecks posed by the network interface and performance 

comparison of 10Gb and 1Gb Ethernet interfaces. For this test we have used 2 industry standard 

benchmarks: TestDFSIO and TeraSort.  

TestDFSIO is used to measure performance of HDFS and stresses both thenetwork and IO subsystems. 

The command reads and writes files in HDFS which is useful in measuring system-wide performance and 

exposing network bottlenecks on the NameNode and DataNodes. A majority of MapReduce workloads 

are IO bound more than compute and hence TestDFSIO can provide an accurate initial picture of such 

scenarios.  

The benchmark can be run for writing, using the –write switch, and using –read for the read test. The 

command line accepts a number of files and sizes of each file in HDFS. As an example, the command for 

a read test may look like: 
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$ hadoop jar Hadoop-*test*.jar TestDFSIO –read –nrFiles 100 –fileSize 10000 

TestDFSIO generates 1 map task per file and splits are defined such that each map gets only one file 

name. After every run, the command generates a log file indicating performance in terms of 4 metrics: 

Throughput in MBytes/s, Average IO rate in MBytes/s, IO rate standard deviation and execution time. 

The most notable metrics are throughput and average IO, both of which are based on file size read or 

written by the individual map task and the elapsed time in performing the task. The throughput for N 

map tasks are defined as: 

           ( )   
∑               
 
   

∑                 
 
   

 

And average IO rate is calculated as: 

                ( )   
∑      
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If the cluster has 50 map slots and TestDFSIO creates 1000 files, the throughput can be calculated as:  

                                                              

The IO rate can be calculated in similar fashion. While measuring cluster performance using TestDFSIO 

may be considered sufficient, the HDFS replication factor (value of dfs.replication in hdfs-site.xml) also 

plays important role. A lower replication factor leads to higher throughput performance due to reduced 

background traffic. 

TeraSort is accepted as an industry standard benchmark to compare performance of Hadoop clusters. 

The benchmark tries to sort 1TB of data as quickly as possible using the entire cluster. This benchmark is 

divided in three phases which are  

 TeraGen – Generates a desired size file as an input and usually ranges between 500GB to 3TB. 

 TeraSort – Sorts the input file across a Hadoop cluster. 

 TeraValidate – Verifies the sorted data for accuracy. 

TeraGen data, once generated, can be used in all runs with the same file size. TeraSort stresses the 

cluster in terms of 3 parameters: IO response, network bandwidth and compute, as well as both layers 

of the Hadoop framework (MapReduce and HDFS). Once sorted, a single reduce task checks the output 

of the sort phase for validity. Each test phase constitutes one run of TeraSort. The format for a TeraSort 

command is:  

$ hadoop jar hadoop-*examples*.jar <input directory> <output directory> 

Our test procedure ran 5 iterations of TestDFSIO for Ten 10GB files followed by five iterations of 

TeraSort using a 1TB file. All results were averaged to minimize errors and test parameters were kept 

constant across all iterations.  



Performance measurement of a Hadoop Cluster 
 

 7 

Results 
To paint a good picture of performance, each benchmark tool was run 5 times on each 1Gb network 

interface and results were averaged to reduce error margin. The same process was carried on 10Gb 

interfaces to get data for comparison. 

TestDFSIO Read 
The read test benefits from high network bandwidth offered by a 10Gb interface. Even with the 

background replication factor set to 3, 10GbE per map task performance is significantly better than 

1GbE in terms of execution time and overall bandwidth utilization. 

 

Figure 3. 10Gb adapter offers 3.4x more throughput and average bandwidth 

 

Figure 4. 10Gb interface reduces execution time by 3.2x even with background replication  

TestDFSIO Write 
Writing of data in HDFS introduces replication overhead on the network, severely bottlenecking the 

gigabit interface. A 10Gb interface provides nearly 5x the amount of bandwidth which offers significantly 

reduced execution time as seen in the graph below. As the cluster scales, the top-of-the-rack switch can 

sustain 5 to 6 times more traffic than traditional gigabit Ethernet allowing more data to flow through the 

compute cluster, providing a dramatic reduction in execution time. 
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Figure 5. The write bandwidth of 10GbE interface is 5 to 6 times greater than 1GbE 

  

Figure 6. The same write task takes 3.68x less time on 10GbE 

TeraSort 
Terasort is a resource intensive benchmark that benefits from high network bandwidth. Teragen is 

mostly sequential write whereas TeraValidate is a single map task with sequential read. However the 

output variability makes direct comparison with TestDFSIO difficult. The time taken for each phase of 

the TeraSort benchmark to sort a 1TB file is presented below. Replication factor has been maintained at 

3 to preserve in rack network traffic. As seen in the below chart, the generation phase is sequential 

write and benefits the most from the available network bandwidth. The Sort phase of the benchmark is 

IO bound and hence execution time is almost comparable. TeraValidate forcefully sets the number of 

reducers to 1 and hence it may not observe the same performance benefits as the other tests. Overall 

cluster performance of the cluster is significantly better for 10GbE due to the log effect (total execution 

time of a job is dominated by the longest running map and reduce task). 
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Figure 7. Generation state benefits the most due to its parallel nature 

Conclusion 
Traditional Hadoop workloads are IO and network intensive and performance of a Hadoop cluster 

greatly benefits from availability of increased network bandwidth. As the amount of data grows, the 

10Gb interface scales much better than grouped 1Gb interfaces, offering significant reduction in 

execution time. While MapReduce offers an attractive solution to part of the Big Data puzzle, each 

application has unique resource usage patterns and fine grained tuning of parameters is required to get 

optimum performance out of the compute infrastructure. Before deploying the application for 

production usage, benchmarking the cluster with test and real application workloads can offer 

invaluable insights into the inner workings of Hadoop. 
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